A Numerical Study of Pulsatile Blood Flow in an Eccentric Catheterized Artery Using a Fast Algorithm

نویسندگان

  • Prabir Daripa
  • Ranjan K. Dash
چکیده

The pulsatile blood flow in an eccentric catheterized artery is studied numerically by making use of an extended version of the fast algorithm of Borges and Daripa [Jour. Comput. Phys., 2001]. The mathematical model involves the usual assumptions that the arterial segment is straight, the arterial wall is rigid and impermeable, blood is an incompressible Newtonian fluid, and the flow is fully developed. The flow rate (flux) is considered as a periodic function of time (prescribed). The axial pressure gradient and velocity distribution in the eccentric catheterized artery are obtained as solutions of the problem. Through the computed results on axial pressure gradient, the increases in mean pressure gradient and frictional resistance in the artery due to catheterization are estimated. These estimates can be used to correct the error involved in the measured pressure gradients using catheters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

Numerical Investigation of Angulation Effects in Stenosed Renal Arteries

Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Diffusive Mass Transfer in an Eccentric Annular Flow

The dispersion in an eccentric annulus region by taking blood as a Newtonian fluid with the investigation of oxygen transfer to the tissue cells in an eccentric catheterized artery is studied. The region bounded by eccentric circles in x-y plane is conformal mapping to concentric circles in   plane using a conformal mapping 1 . z c    The resulting governing equations are analytically solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001